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Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic
groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria reg-
ulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to
share evolutionary trends.

Guts and roots are inhabited by many different bacteria (1–5),
archaea (6–12), and viruses (13–16), as well as by eukaryotes

(17–20), with some of them containing bacteria of their own (21–
24). Variations in gut microbiota respond to age (25–28), diet
(29–31), or species (32). Most insects have dozens of microbial
species in their guts, while mammalian guts may contain thou-
sands. Herbivores exhibit the largest diversity (32, 33), including
probably plant-associated bacteria, especially endophytes (34)
that, by being inside plant tissues, may survive stomach digestion.
Transiting diet-borne bacteria may contribute to gut metabolic
capacities. Different soil types, moisture (35), plant genotypes
(36), age (37), and root lysates, secretions, or exudates (38) are
determinants of root microbiotas. Factors that determine root
exudates, such as availability of inorganic nutrients, temperature,
light intensity, O2/CO2 level, or root damage, may indirectly affect
root microbiotas (39). The presence of pathogens induces changes
in microbiota composition in roots and guts (40, 41).

Guts and roots have large surface areas, with microvilli and
folds or root hairs in some parts. Both roots and guts are struc-
tured, nonhomogenous habitats with pH, nutrient, water, and
oxygen differential levels or gradients. Gradients would favor col-
onization by distinct bacteria that are more successful in some
root or gut regions. In consequence, the multiple microhabitats
that exist in roots and guts contribute to high species richness (42,
43). Different conditions are found in the cecum and distal colon
in humans, with cecal and colon microbiotas containing a larger
proportion of facultative anaerobes (44). Colon mucosal folds ex-
hibit particular bacteria adapted to colonic conditions and maybe
to mucin degradation (45). Some insects have specialized struc-
tures in their gut, such as midgut sacs and tubular outgrowths
called ceca or crypts, in which they harbor specific bacteria (46),
and others with less-complex guts also have pH and oxygen gra-
dients in their guts (47). A steep oxygen gradient including an
anaerobic root environment in water-saturated roots parallels the
gut oxygen gradient and anaerobic gut systems. Clostridia, and
especially members of the family Ruminococcaceae, are more prev-
alent than other anaerobes and methanogens, a trend which is
similar in the different gut systems (48). These communities take
care of the degradation of the complex organic matter in the outer
root layers. Some gut and root acid-tolerant bacteria can modify
their environment by lowering the pH when producing diverse
acids (49, 50). Along the roots, there are physiological differences,
and their exudates are secreted differentially at the apical meris-
tem, root cap, or root hairs (42), creating different microhabitats.
A single Burkholderia strain colonizes only discrete root regions

(51), and different burkholderias were found at different soil
depths (37).

“Arabidopsis thaliana root microbiome might assemble by core
ecological principles similar to those shaping the mammalian mi-
crobiome in which core phylum level enterotypes provide broad
metabolic potential combined with modest levels of host geno-
type-dependent associations” (35). Metacommunity theory may
be applied to root microbiotas, as has been used to explain the
assembly of the gut microbial community (52). Metacommunity
theory is based on the concept of discontinuous patches and in-
teractions that can satisfactorily describe bacterial patchy coloni-
zation of roots. Future applications of these concepts will assert
their usefulness.

Remarkably, there are individual-to-individual variations in
bacterial composition of the gut (2, 53) and roots (54). Individual
differences may be due to genetic differences and stochastic colo-
nization processes (52). Limited patterns (enterotypes) in relation
to stratified variation were distinguished in human and insect gut
microbiotas (2, 55); however, it is controversial if there are only a
few enterotypes in humans or gradients of diversity (28). In plants,
similar bacterial genera are recurrently isolated from rhizospheres
(soil surrounding roots affected by plants) or roots (34, 56). In
roots, Rhizobium strain diversity with functional differentiation is
high (57). Strain variability in vitamin production has been de-
tected among gut bifidobacteria (reviewed in reference 58). Sim-
ilarly, lactobacilli (reviewed in reference 59) are a heterogeneous
group of bacteria with partly probiotic character which have con-
siderable variation in terms of molecular characteristics and pre-
ferred natural habitats.

With few exceptions (see below), the gut microbiota is differ-
ent from that of other host organs, and similarly, the root micro-
biota shares only some bacteria with those of other plant organs.

ENVIRONMENTAL AND MATERNAL ACQUISITION

Root and gut microorganisms are usually acquired from the envi-
ronment. Roots are colonized by bulk soil microorganisms at-
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tracted by chemotaxis and enriched by nutrients secreted by the
roots in the rhizosphere. Animals also acquire their gut microbi-
ota from their environment after they are born (60). In a few cases,
microorganisms can be transferred vertically from mother to
progenies. Endophytes present in plant seeds may subsequently
colonize the roots and the rhizosphere. Enterobacter asburiae,
found in maize kernels, is able to exit the roots and colonize the
rhizosphere after the plant has established (61). Other seed bacte-
ria do the same (54, 62). Animals can also acquire their gut micro-
biota from their mothers after being born, but there are cases of
paternal transmission of symbionts, as in malaria vectors (63).
Maternal transmission may occur before birth (64–66). When
mammals are breast-fed, they acquire microorganisms that are
present in the milk or on the mother’s skin (67–69). Some stink-
bug larvae acquire their mother’s gut bacteria from contaminated
eggs, by coprophagy, or by capsule-mediated transmission just
after they have hatched (46). In view of the vertical and environ-
mental transmission of root and gut microbes, gnotobiotic ani-
mals or plants are needed to clearly evaluate the effects of selected
strains on hosts.

FUNCTIONAL REDUNDANCY AND ROLE OF MINORITIES

It seems that different microbiota composition may lead to the
same and stable function. This may apply to gut and root bacteria
and has been found to be true in methanogenic reactors (70).
Similar degrading capacities are found in different gut bacteria
(reviewed in reference 71). In roots, many different bacterial gen-
era and species produce hormones, auxins, cytokinins, or gibber-
ellins (reviewed in references 56 and 72). Our research group
found that riboflavin is produced and excreted by different strains
from several species of Methylobacterium, Rhizobium, Sinorhizo-
bium, and Bacillus, both in rice and alfalfa root exudates and in
pure cultures in minimal medium (our unpublished data). In vitro
excretion of riboflavin by a large diversity of bacteria, including
Chromobacterium violaceum and Pantoea agglomerans, was re-
ported earlier (73), and both riboflavin and lumichrome (which is
derived from riboflavin) stimulate root respiration (74). Addi-
tionally, many different plant-associated bacteria inhibit patho-
genic fungi or bacteria (reviewed in reference 56).

Minority species present in the microbiota may help cover
some of the host-specific needs. Methanogens, methylotrophs,
and nitrogen-fixing bacteria are minor components in guts and
rhizospheres (11, 75–78); however, they have important ecologi-
cal roles. In some roots and guts, nitrogen fixation provides nitro-
gen to plants (79) and insects (80–82).

GUT AND ROOT BACTERIA ENHANCE THE METABOLIC
CAPACITIES OF THEIR HOSTS

It is remarkable that gut bacteria are rich in sugar hydrolases (83)
and other catabolic genes, such as those for tannin (84), choles-
terol (85), or mucin (gut glycosylated proteins) (86). Similarly,
capacities to degrade polyphenols, polysaccharides, protocatech-
uate, and proteins and to solubilize phosphate and weather rocks
(50, 54, 87, 88) are prevalent among different rhizospheric bacte-
ria. Mimosine-degrading bacteria are found in mimosa plants that
produce mimosine (89), and cows that have such bacteria in their
rumen are capable of degrading it (90). Alginate-degrading bac-
teria are found in abalone and human guts of algae consumers in
Japan (91). The outstanding degrading capacities of root bacteria
are the basis of rhizoremediation of polluting substances (92, 93)

and are also evidenced in medical drug transformation or degra-
dation in the human gut (94–96). Interestingly, in bioremedia-
tion, the abilities of bacteria to degrade soil pollutants may be
triggered by flavonoids (97).

Gut and rhizospheric bacteria produce vitamins as riboflavin,
as stated above. Vitamin B12 is an exclusive product of prokaryotes
(98), and it is produced by plant root and gut bacteria (99–102).
Essential amino acids and vitamins B and K are produced by gut
bacteria (reviewed in reference 58). An alcohol dehydrogenase
from the commensal bacterium Acetobacter pomorum modulates
Drosophila developmental and metabolic homeostasis via insulin
signaling (103). While root bacteria produce plant hormones that
have effects on plant growth (reviewed in reference 56), gut bac-
teria seem to regulate animal behavior (104, 105).

GUT AND ROOT MICROBIOTAS COMPETE WITH PATHOGENS

Gut and root microbiotas suppress pathogens (reviewed in refer-
ences 56 and 106). The human control of root bacteria has been
envisaged as a manner to promote plant growth and health with
benefits to agriculture (93, 107). Bacterial inoculants in agricul-
ture and forestry are considered equivalent to probiotics (benefi-
cial microbes provided as supplements) for animal health. Probi-
otics stimulate host defense systems and the competitive exclusion
of pathogens, as plant growth-promoting rhizobacteria do (108).
Seeds may harbor a reservoir of probiotics for their seedlings (54,
109). Prebiotics are added nutrients used to stimulate desirable
bacteria in humans (110). We may even speculate that prebiotics
were invented by roots, as some substances from their exudates
stimulate bacterial growth selectively (89, 111, 112).

For over one hundred years, inoculants have been provided to
plants in agricultural fields with variable success. Recently, a large
number of commercial products whose effects are not always de-
sirable have appeared to promote plant growth. Similarly, an in-
creased number of probiotics and prebiotics whose effects have
not been completely evaluated in different human populations are
coming to the market. Gut gene expression in response to probi-
otics varies from person to person (113). In many cases, clinical
benefits have been obtained in patients with specific probiotic
strains (114).

Experience with plants has shown that appropriate use and
regulation of probiotics (inoculants) is difficult to achieve. Unde-
sirable genetic characteristics, such as denitrifying capacities, have
been identified among inoculants (115). Strains used as probiotics
should not contain glucosaminidase or glucuronidase genes that
seem to have roles in producing toxic substances in the gut (re-
viewed in reference 116), but these recommendations may not be
easily followed.

SIMILAR BACTERIUM-HOST INTERACTIONS IN GUTS AND
ROOTS
Differential gene expression of bacteria in hosts. Bacterium-
plant interactions have been studied for many years, and a molec-
ular ping pong between rhizobia and plants that may serve as a
model to analyze insect or human gut symbioses is known (re-
viewed in references 1 and 117). In rhizobium-plant molecular
dialogue, Rhizobium NodD receptors, which bind root exudate
molecules, function as transcriptional regulators that induce the
expression of several genes, including nod genes and secretion
systems (reviewed in references 117 and 118). Extrusion pumps
are inducible by flavonoids that are present in root exudates but
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do not require NodD genes (119). Many ABC transporter systems
are induced by the respective substrate or other molecules from
roots (111, 120).

In roots, bacteria have a differential gene expression that sup-
posedly allows them to adapt to the root environment. Genes
involved in root exudate usage, root attachment, and survival are
induced in bacteria colonizing roots (120, 121). In vitro expression
technology (IVET) (122), proteomic analysis, microarray and
RNA Seq transcriptomics, and genetic analysis have revealed rhi-
zobial (120, 121, 123), Pseudomonas (124, 125), Streptomyces
(126), and other bacterial genes expressed on roots or rhizo-
spheres. Similarly, bacteria may differentially express genes when
in guts. Gut bacteria are exposed to bile salts that solubilize diet fat,
have antimicrobial activities (127), and regulate bacterial gene ex-
pression. An efflux transporter of the multidrug resistance type
(MDR) was induced in Bifidobacterium by bile (128). Different
bile substances have been identified to control gene expression in
bifidobacteria (129). Other bile-inducible genes have been found
in Lactobacillus plantarum (130). Lastly, human gut bacteria
transform bile salts (131). Gut bacteria can also modify dietary
flavonoids (132) that have significant effects on animal physiol-
ogy. Analogously, in roots, flavonoids produced by plants are sig-
nal molecules in bacteria (133) and are also transformed by bac-
teria in vitro, though this has not been shown in vivo. Plant
phytoalexins are antimicrobials that are expelled from Rhizobium
etli, Bradyrhizobium japonicum, and Agrobacterium by MDR ef-
flux pumps that are inducible by root-exudated flavonoids (20,
119, 134).

Interestingly, gut and root microbiotas may follow the circa-
dian cycles of their hosts. This was observed in nitrogen-fixing
bacteria that fixed more during the daytime on rice roots (135).
Epithelial cell proliferation, gastrointestinal motility, and other
gut processes follow biological rhythms. In the gastrointestinal
tract, there are large amounts of melatonin, which is a key hor-
mone in the clock biological regulation (136). The Burmese
python’s microbiota is responsive to host cycles of feeding and
fasting (137).

Host gene expression regulated by microbiotas. Outstand-
ingly, gut and root bacteria modify gene expression in animal
(138, 139) and plant (140) hosts, respectively. Gut gene expression
is also modified by probiotics (113) that modify gut bacterial gene
expression as well (141). Gut genes expressed in the presence of
the gut bacterium Bacteroides thetaiotaomicron are involved in
xenobiotic catabolism, in angiogenesis, in gut barrier epithelium
maintenance, and in immunity development (139), with very
complex host molecular responses (142).

Plants and humans can sense bacterially produced acylhomo-
serine lactones (AHLs), different volatiles, microbe-associated
molecular patterns (MAMPS) (72, 143), and other bacterial mol-
ecules unknown at present. Root gene expression is differently
modified by acylhomoserine lactones from pathogenic or symbi-
otic bacteria (144). In turn, plant products may act like quorum-
sensing signals in bacteria (145). In recent years, specific regula-
tory roles of N-acylhomoserine lactones have become apparent,
because plants responded with either a systemic resistance re-
sponse or a hormonal regulated growth response to the presence
of AHL-producing bacteria colonizing the root surface. Also in the
animal/human systems, a specific perception of AHL compounds,
produced by Gram-negative, mostly pathogenic bacteria, was
found in many tissues, including the gut system, leading to immu-

nomodulatory effects (146). In plants, root genes induced by rhi-
zospheric bacteria are involved in oxidative and defense re-
sponses, in plant secondary metabolism, or in signaling (140).
Plants may detect bacterial cyclopeptides through auxin sensing
pathways (147). In a more specialized symbiosis, a cascade of sig-
naling processes occurs inside root cells in the presence of rhizobia
or Nod factors (148).

Control of microbiotas. A Drosophila mutant with increased
levels of antimicrobial peptides showed deregulated balances of
gut populations (149), with smaller numbers of Commensalibacter
intestini (an acetic acid bacterium present in normal gut) bacteria
(150) and increased numbers of Gluconobacter morbifer cells that
caused gut cell apoptosis and early insect death (149). It is inter-
esting to note that C. intestini antagonizes G. morbifer, which is a
normal gut member, but with detrimental effects when present in
large numbers; thus, C. intestini contributes to gut homeostasis
and host fitness (151). Similarly, among root microbiotas, there
are plant-pathogenic bacteria that normally would not affect the
plants when kept in low numbers by other plant community
strains or plant antimicrobials. Lipopolysaccharide Rhizobium
mutants that were more sensitive to maize antimicrobial benzox-
azinones had reduced rhizospheric colonization (152). Antimi-
crobial peptides constitute a line of defense in plants as effectors of
innate immunity and regulate not only bacteria but also metha-
nogenic archaea in guts (153). Gut immunity determines bacterial
composition; reciprocally, bacteria modulate host immunity in
guts (154, 155). Carbohydrate binding proteins (lectins) from
guts and roots bind bacteria, form aggregates, and may have anti-
bacterial effects (156, 157).

In addition to bacterium-host interactions, bacterium-bacte-
rium interactions may determine community composition and its
function (158). Those that occur in the mouth (159) may guide
research in gut and root symbioses. In Rhizobium, mutants in
quorum sensing are affected in rhizosphere colonization (160).
Acylhomoserine lactones may be degraded by rhizospheric bacte-
ria causing interference with quorum signals that regulate gene
expression in other bacteria (161). This may have a role in pro-
tecting plants from pathogens but may also affect mutualistic in-
teractions.

EVOLUTIONARY PATHWAYS
Lateral gene transfer in guts and roots. In roots, root nodules,
and guts, lateral transfer of genetic material between different bac-
teria has been evidenced (2, 162, 163), seemingly promoted by
close contacts in high-density populations. The presence of simi-
lar catabolic or antibiotic resistance genes in various gut bacterial
genera has been explained as acquisitions by lateral gene transfers
(91). It has been suggested that starch catabolism genes have been
transferred from gut to bacteria (164).

There are many more phages than bacteria in the gut (13), and
some may be involved in lateral gene transfer among gut bacteria
(165). Lateral transfer of genetic material is mediated by plasmids
or genomic island mobilization in rhizobia and other rhizospheric
bacteria (54, 166), but phages may have a role as well.

Specialized symbiont evolution from root and gut bacteria.
It has been suggested that gut bacteria gave rise to endosymbiotic
bacteria in insects (167) based on similarities of gut bacteria and
insect endosymbionts (168). Correspondingly, rhizospheric bac-
teria may have preceded nodule and endophytic bacteria in plants
(169). Insect endosymbionts and nodule rhizobia are selected
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symbionts that occupy intracellularly host-specialized structures
and attain high numbers with a determined functional role. How-
ever, transmission modes of plant- and insect-specialized symbi-
onts (reviewed in reference 46) and their genome sizes (rhizobial
genome sizes reviewed in references 121 and 170) are different.

CONCLUSIONS

The comparison of plant and gut microbial ecologies may help to
guide research toward the understanding of such complex symbi-
oses. Literature on the subject is so extensive that only a few ref-
erences were used to illustrate the commonalities of gut and root
microbiotas. Interested readers are referred to recent literature
(171–175). Plants use their “guts” (roots) outwards, and this sim-
plifies their study in comparison to study of animal guts. Gut and
root microbiotas significantly impact health, development, and
fitness of their respective hosts.
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activity, p 77–98. In Fuller R, Perdiǵon G (ed), Gut flora, nutrition, im-
munity and health. Blackwell Publishing, Oxford, United Kingdom.

72. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-
Bucio J. 2009. The role of microbial signals in plant growth and devel-
opment. Plant Signal Behav. 4:701–712.

73. Phillips DA, Martínez-Romero E, Yang GP, Joseph JM. 2000. Release
of nitrogen: a key trait in selecting bacterial endophytes for agronomi-
cally useful nitrogen fixation, p 205–217. In Ladha JK, Reddy PM (ed),
The quest for nitrogen fixation in rice. IRRI, Manila, Philippines.

74. Phillips DA, Joseph CM, Yang GP, Martinez-Romero E, Sanborn JR,
Volpin H. 1999. Identification of lumichrome as a sinorhizobium en-
hancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci.
U. S. A. 96:12275–12280.

75. Gibson GR, Cummings JH, Macfarlane GT. 1988. Use of a three-stage
continuous culture system to study the effect of mucin on dissimilatory
sulfate reduction and methanogenesis by mixed populations of human
gut bacteria. Appl. Environ. Microbiol. 54:2750 –2755.

76. Ladha JK, Barraquio WL, Watanabe I. 1983. Isolation and identifica-
tion of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola as-
sociated with rice plants. Can. J. Microbiol. 29:1301–1308.

77. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. 2009. Methylophilus
rhizosphaerae sp. nov., a restricted facultative methylotroph isolated
from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 59:2904 –2908.

78. St-Pierre B, Wright AD. 27 April 2012, posting date. Diversity of gut
methanogens in herbivorous animals. Animal. http://dx.doi.org/
10.1017/S1751731112000912.

79. Ormeño-Orrillo E, Hungria M, Martinez-Romero E. Dinitrogen-fixing
prokaryotes. In Rosenberg E, DeLong EF, Stackebrandt E, Lory S,

Minireview

6 aem.asm.org Applied and Environmental Microbiology

http://dx.doi.org/10.1017/S1751731112000912
http://dx.doi.org/10.1017/S1751731112000912
http://aem.asm.org


Thompson F (ed), The prokaryotes, vol 1. Symbiotic associations, bio-
technology, applied microbiology, 4th ed, in press. Springer, New York,
NY.

80. Behar A, Yuval B, Jurkevitch E. 2005. Enterobacteria-mediated nitro-
gen fixation in natural populations of the fruit fly Ceratitis capitata. Mol.
Ecol. 14:2637–2643.

81. Desai MS, Brunes A. 2012. Bacteroidales ectosymbionts of gut flagellates
shape the nitrogen-fixing community in dry-wood termites. ISME J.
6:1302–1313.

82. Ohkuma M. 2008. Symbioses of flagellates and prokaryotes in the gut of
lower termites. Trends Microbiol. 16:345–352.

83. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysac-
charide utilization by gut bacteria: potential for new insights from
genomic analysis. Nat. Rev. Microbiol. 6:121–131.

84. Osawa R, Kuroiso K, Goto S, Shimizu A. 2000. Isolation of tannin-
degrading lactobacilli from humans and fermented foods. Appl. Envi-
ron. Microbiol. 66:3093–3097.

85. Gérard P, Lepercq P, Leclerc M, Gavini F, Raibaud P, Juste C. 2007.
Bacteroides sp. strain D8, the first cholesterol-reducing bacterium iso-
lated from human feces. Appl. Environ. Microbiol. 73:5742–5749.

86. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. 2008.
The mucin degrader Akkermansia muciniphila is an abundant resident of
the human intestinal tract. Appl. Environ. Microbiol. 74:1646 –1648.

87. Calvaruso C, Turpault MP, Frey-Klett P. 2006. Root-associated bacte-
ria contribute to mineral weathering and to mineral nutrition in trees: a
budgeting analysis. Appl. Environ. Microbiol. 72:1258 –1266.

88. Puente ME, Bashan Y, Li CY, Lebsky VK. 2004. Microbial populations
and activities in the rhizoplane of rock-weathering desert plants. I. Root
colonization and weathering of igneous rocks. Plant Biol. 6:629 – 642.

89. Soedarjo M, Hemscheidt TK, Borthakur D. 1994. Mimosine, a toxin
present in leguminous trees (Leucaena spp.), induces a mimosine-
degrading enzyme activity in some Rhizobium strains. Appl. Environ.
Microbiol. 60:4268 – 4272.

90. Allison MJ, Hammond AC, Jones RJ. 1990. Detection of ruminal bac-
teria that degrade toxic dihydroxypyridine compounds produced from
mimosine. Appl. Environ. Microbiol. 56:590 –594.

91. Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G.
2012. Characterization of the first alginolytic operons in a marine bacte-
rium: from their emergence in marine Flavobacteria to their indepen-
dent transfers to marine Proteobacteria and human gut Bacteroides. En-
viron. Microbiol. 14:2379 –2394.

92. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. 2004. Rhizore-
mediation: a beneficial plant-microbe interaction. Mol. Plant Microbe
Interact. 17:6 –15.

93. Lugtenberg BJ, Kravchenko LV, Simons M. 1999. Tomato seed and
root exudate sugars: composition, utilization by Pseudomonas biocontrol
strains and role in rhizosphere colonization. Environ. Microbiol. 1:439 –
446.

94. Haiser HJ, Turnbaugh PJ. 2012. Is it time for a metagenomic basis of
therapeutics? Science 336:1253–1255.

95. Mikov M. 1994. The metabolism of drugs by the gut flora. Eur. J. Drug
Metab. Pharmacokinet. 19:201–207.

96. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW.
2008. The gastrointestinal microbiota as a site for the biotransformation
of drugs. Int. J. Pharm. 363:1–25.

97. Pham TT, Tu Y, Sylvestre M. 2012. Remarkable ability of Pandoraea
pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids.
Appl. Environ. Microbiol. 78:3560 –3570.

98. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Com-
parative genomics of the vitamin B12 metabolism and regulation in pro-
karyotes. J. Biol. Chem. 278:41148 – 41159.

99. Albert MJ, Mathan VI, Baker SJ. 1980. Vitamin B12 synthesis by human
small intestinal bacteria. Nature 283:781–782.

100. Campbell GR, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR,
Walker GC. 2006. Sinorhizobium meliloti bluB is necessary for produc-
tion of 5,6-dimethylbenzimidazole, the lower ligand of B12. Proc. Natl.
Acad. Sci. U. S. A. 103:4634 – 4639.

101. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T,
Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H,
Yshimura T, Itoh K, O’Sullivan D, McKay L, Ohno H, Kikuchi J,
Masaoka T, Hattori M. 2008. Comparative genome analysis of Lactoba-
cillus reuteri and Lactobacillus fermentum reveal a genomic island for
reuterin and cobalamin production. DNA Res. 15:151–161.

102. Ramotar K, Conly JM, Chubb H, Louie TJ. 1984. Production of
menaquinones by intestinal anaerobes. J. Infect. Dis. 150:213–218.

103. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH,
Lee WJ. 2011. Drosophila microbiome modulates host developmental
and metabolic homeostasis via insulin signaling. Science 334:670 – 674.

104. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y,
Blennerhasset P, Macri J, McCoy K, Verdu EF, Collins SM. 2011. The
intestinal microbiota affect central levels of brain-derived neurotropic
factor and behavior in mice. Gastroenterology 141:599 – 609.

105. Díaz Heijtz RD, Wang S, Anuar F, Qiuan Y, Björkholm B, Samuelsson
A, Hibberd ML, Frossberg H, Pettersson S. 2011. Normal gut micro-
biota modulates brain development and behavior. Proc. Natl. Acad. Sci.
U. S. A. 108:3047–3052.

106. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervon-
sky AV, Golovkina TV. 2011. Successful transmission of a retrovirus
depends on the commensal microbiota. Science 334:245–249.

107. Jung SC, Martínez-Medina A, López-Raez JA, Pozo MJ. 2012. Mycor-
rhiza-induced resistance and priming of plant defenses. J. Chem. Ecol.
38:651– 664.

108. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005.
Probiotic and other functional microbes: from markets to mechanisms.
Curr. Opin. Biotechnol. 16:204 –211.

109. Puente ME, Li CY, Bashan Y. 2009. Rock-degrading endophytic bacte-
ria in cacti. Environ. Exp. Bot. 66:389 – 401.

110. Gibson GR, Rastall RA, Fuller R. 2003. The health benefits of probiotics
and prebiotics, p 52–76. In Fuller R, Perdiǵon G (ed), Gut flora, nutri-
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